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Abstract
Recently it has been found (Pruessner G and Jensen H J 2003 Phys. Rev. Lett.
91 244303) that a totally asymmetric variant of the Oslo model (Christensen K
et al 1996 Phys. Rev. Lett. 77 107) represents the entire universality class of the
Oslo model with anisotropy. The totally asymmetric model can be solved
without scaling assumptions by finding recursively the eigenvectors of the
Markov matrix, which can be suitably modified to produce the moment
generating function of the relevant observable. This method should be
applicable to many other stochastic processes.

PACS numbers: 02.50.Ga, 05.65.+b, 68.35.Rh

1. Introduction

Self-organized criticality (SOC) was originally introduced [1] as an approach to understand
1/f -noise as well as the apparent abundance of power laws in nature, which is generally
accepted as the sign of scale invariance. The idea is that under very general circumstances
driven stochastic processes develop into a scale-invariant state without the explicit tuning of
parameters, contrary to what one would expect from equilibrium critical phenomena [2].

A very large zoo of SOC models has been developed [3], with each model having
certain special features. However, based on large-scale numerical simulations it has become
increasingly clear that many of the models, formerly thought of as representatives of entire
universality classes or even paradigms for a specific type of model, are either not scale invariant
or at least do not follow simple scaling [4–7]. In fact, models of SOC are notorious for slow
convergence and deviations from the expected behaviour.

Some models, however, show all the features one would expect from a ‘self-organized
critical’ system: consistent exponents and scaling, universality, crossover between different
classes etc. One of these models is the so-called Oslo model [8], which was motivated by an
experiment [9]. In a recent paper [10], it has been shown that any (small) amount of anisotropy
will drive this model eventually (in the thermodynamic limit) towards another ‘fixed point’,
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which is represented by the ‘totally asymmetric Oslo model’ (TAOM). This model is solvable
directly on the lattice without making any scaling assumptions. Consequently, it is not only
possible to derive exponents, but also to calculate amplitudes of the moments of the relevant
observable.

The TAOM is totally asymmetric in the sense that particles can move in one direction
only, similar to the totally asymmetric exclusion process (TASEP) [11, 12]. The TASEP
has been solved using a matrix product state ansatz [12, 13], so that it seems reasonable to
apply similar techniques to the present model. However, there is a crucial difference between
these two stochastic processes: the relevant observables in the TASEP exist on a microscopic
timescale, i.e. there is an intrinsic timescale in the time evolution of the microstate of the
system. In contrast, in the TAOM the relevant observables are obtained by any dynamics
which comply with a certain set of rules. In that sense, the specific (microscopic) dynamics
of the TAOM are irrelevant. This is reflected in its theoretical treatment, in that the TASEP is
updated homogeneously (all sites evolve equally) but the TAOM is perturbed once and is only
observed after it is fully relaxed (separation of timescales).

In the following, the model is defined in terms of rules on a lattice. Using a Markov
matrix approach it is then solved and exponents and amplitudes derived. After mapping it to
a reaction–diffusion process as well as various other processes, a more accessible continuum
theory is described.

2. The model

The model is defined on a one-dimensional lattice of size L, where each site i = 1, 2, . . . , L

has assigned a slope zi ∈ {1, 2} and a critical slope zc
i ∈ {1, 2}. From a flat initial configuration

zi ≡ 1 and zc
i random, where zc

i = 1 is chosen with probability p and zc
i = 2 otherwise, the

model evolves according to the following rules:

(i) (Driving) Increase z1 by one unit (‘initial kick’).
(ii) (Toppling) If there is an i where zi > zc

i , decrease zi by 1 unit, zi → zi − 1, and increase
the right nearest neighbour j = i + 1 by 1, zj → zj + 1 (charging). A new zc

i is chosen
at random from {1, 2}, where zc

i = 1 is chosen with probability p and zc
i = 2 otherwise.

(iii) Repeat the second step until zi � zc
i (‘stable’) everywhere. Then proceed with the first

step.

During toppling, the right neighbour is charged of course only if it actually exists, i.e. j � L,
otherwise the toppling site i relaxes without charging another site, so that a unit leaves the
system. Apart from this boundary condition, the TAOM differs from the original Oslo model
[8] in redistributing only a unit to the right, rather than one to each side.

It is important to note that the value of zc
i is determined only after a site has discharged.

Thus, if a stable site i is in state zi = 1, its value of zc
i could be randomly chosen in the moment

when it is needed, i.e. when the site is charged again. If a stable site i is in state zi = 2, then zc
i

has necessarily the value 2. When this site is charged, it will relax to zi = 2 again and a new
random zc

i is drawn. If that is zc
i = 1, then the site topples again and ends up in state zi = 1,

otherwise it remains in state zi = 2.
If all sites are stable, i.e. zi � zc

i for all i ∈ [1, L], a configuration is fully described by
the values of the zi alone; if zi = 2 then zc

i = 2, otherwise zc
i is random and has not yet been

used in the dynamics.
The number of times the second rule is applied, that is the number of topplings, is the

avalanche size s. The fundamental observable one is interested in is the probability density
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function of these sizes, P(s), which is expected to obey simple scaling above a fixed lower
cutoff sl ,

P(s) = as−τG(s/s0) (1)

with s0 = bLD,G the universal finite-size scaling function, and metric factors a and b [14].
Equation (1) is the definition of the two exponents τ and D. It entails that the moments 〈sn〉 of
P(s) behave like [10]

〈sn〉 = a(bLD)1+n−τ gn for 1 + n − τ > 0 (2)

with universal amplitudes gn [10]. Thus, assuming (1) one can derive τ and D from the
behaviour of any two moments. Below, the exponents γn from 〈sn〉 ∝ Lγn will be used;
equation (2) therefore means

γn = D(1 + n − τ). (3)

The time series of avalanches, s(t), itself is not Markovian, while the sequence of stable
configurations of the system, given by the vector (z1, z2, . . . , zL), is. Since two consecutive
stable configurations are not necessarily linked by a unique sequence of topplings, the sequence
of avalanche sizes is not uniquely determined by the sequence of configurations. Nevertheless,
in the form of a generating function this ambiguity can be built into the Markov matrix
operating on the distribution vector of configurations, so that the avalanche size distribution
can be determined by means of this specially prepared Markov matrix.

2.1. Abelian property

Put simply, if a model is Abelian [15], it means that the order of updates is irrelevant for its
statistical properties. It is exceptionally simple to see this property here: firstly, for the final
state of an individual site there is no difference between a certain number of charges arriving
at once or arriving sequentially. Secondly, if a site topples, it pours particles on its right
neighbour, but it will never receive anything back from the neighbour. So, if a site at z = 1
has received 3 units, it topples at least twice, but for this site it does not make any difference
whether it first moves 1 unit over to the right neighbour and waits until all sites to its right
have relaxed, or whether it moves all units at once, 2 with probability q ≡ 1 − p (namely the
probability to have zc

i = 2 after the second toppling) and 3 with probability p.
In this informal sense, the Abelian property allows the updating to run from left to right,

completely relaxing each site during a sweep. If there is no toppling on site i, the avalanche
has stopped and sites j > i do not need to be checked for the toppling condition zj > zc

j at all.
This procedure makes very efficient Monte Carlo simulations possible. Moreover, it defines
an activity ai , which is the total number of charges received at site i during an avalanche. The
activity will be used in section 4.

3. Markov matrix approach

The tensor product ⊗ used here is explained in detail in [16]. In particular it has the property
(provided that A,B,A′ and B ′ have appropriate ranks)

(A ⊗ B) 	 (A′ ⊗ B ′) = (A 	 A′) ⊗ (B 	 B ′) (4)

where 	 stands for the appropriate operator: it is a matrix multiplication if A,B,A′ and B ′

are matrices, it is a multiplication of a matrix and a vector if A and B are matrices and A′ and
B ′ are vectors or vice versa, or it is an inner product if they are all vectors. In particular, in
the latter case it is

(a ⊗ b)(a′ ⊗ b′) = (aa′)(bb′). (5)



7458 G Pruessner

First, we consider a single-site system, which can be in exactly two states, so that its
distribution of states can be represented by a two-row vector. By convention, the upper row
corresponds to z = 1 and the lower row to z = 2. Three matrices are introduced, corresponding
to the three possible outcomes of a single initial kick.

The matrix S corresponds to a unit being absorbed, i.e. the site is in state z1 = 1 and
zc

1 = 2, which occurs with probability q. After the charge, the system is in state zi = 2.
Similarly, T corresponds to a single toppling due to the charge and U corresponds to a double
toppling:

S =
(

0 0
q 0

)
T =

(
p 0
0 q

)
U =

(
0 p

0 0

)
. (6)

In the following, the aim is to find an expression for the moment generating function of the
avalanche size distribution. To this end, each matrix is multiplied by an appropriate power of
x, so that evaluating at x = 1 gives the usual Markov matrix of this process, and deriving by x
before evaluating at x = 1 multiplies each process by the number of topplings occurring in it,
and similarly for higher order moments [17].

It will be motivated only a posteriori that a dissipation process is required, say with
probability 0 � ε � 1; this process corresponds to charging without changing the state, i.e.
an identity operation 1, the latter being the 2 × 2 identity matrix. The resulting single-site
operator is therefore

O1(x) = ε1 + δ(S + xT + x2U) =
(

ε + xδp x2δp

δq ε + xδq

)
(7)

with δ ≡ 1 − ε. The eigenvectors and eigenvalues of this matrix are found to be

〈eλ(x)| =
(

1

x
, 1

)
|eλ(x)〉 =

(
xp

q

)
λ = ε + xδ

〈eµ(x)| =
(
−q

x
, p

)
|eµ(x)〉 =

(−x

1

)
µ = ε

(8)

where O1 acts on bra-vectors 〈| from the right and on ket-vectors |〉 from the left. The vectors
are normalized such that

〈ea|eb〉 = δa,b (9)

with δa,b denoting the Kronecker delta function. In order to distinguish vectors of different
size, in the following they are often marked with an index L to indicate a size 2L.

OL(x) is the operator which adds a unit on site i = 1 and relaxes the entire lattice of size
L. It is a matrix of size 2L × 2L and defined as

OL(x) = ε1⊗L + δ
(
S ⊗ 1⊗(L−1) + xT ⊗ OL−1(x) + x2U ⊗ O2

L−1(x)
)

(10)

again with a dissipation rate ε, leaving the state unchanged. The bracket multiplied by δ

consists of three terms: the first term charges the site without toppling and leaves the rest of
the system unchanged by operating with the identity 1⊗(L−1). The second term corresponds
to a single toppling, which charges the remaining system of size L − 1 once. This term is
derived using the identity

(T ⊗ 1⊗(L−1))(1 ⊗ OL−1(x)) = T ⊗ OL−1(x). (11)

The third term is a double toppling of the site, giving rise to a double charge of the remaining
system.
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The Abelian property mentioned above (section 2.1) can be expressed as the commutator
for two charges on a system of size L, one at site i = 1, the other one at site 1 + L − L′ with
L′ being the size of the subsystem starting from the site receiving the second charge,

OL(x)(1⊗(L−L′) ⊗ OL′(x)) = (1⊗(L−L′) ⊗ OL′(x))OL(x) (12)

where of course L � L′. The tensor multiplication used on OL′ and also in (11) ensures
that both matrices have the same rank; they are ‘filled with identity’ where they do not act.
Equation (12) simply states that it does not matter for the statistics whether the leftmost site
of a right subsystem of size L′ in a system of size L is charged first, followed by the leftmost
site of the entire system, or vice versa. Due to the asymmetry in the dynamics, it is clear that a
system of size L, initially charged at site i, has the same statistics as a system of size L− i + 1,
charged at its leftmost site. It might be interesting, however, to formally prove equation (12),
which should easily be feasible using established methods [18, 15].

The distribution of states at time t is the vector |Pt 〉L, which has rank 2L, each row
corresponding to the probability for the system to be in the state encoded by that row. The
encoding follows from the row ordering convention introduced above and the use of the tensor
product in (10).

For x = 1 the operator OL(x) is simply the Markov matrix acting on |Pt 〉L, producing
the distribution of states at time t + 1 [17]

|Pt+1〉L = OL(1)|Pt 〉L. (13)

There exists at least one eigenvector with eigenvalue 1, which is therefore a stationary
distribution. If the eigenvectors represent a complete basis and the modulus of all other
eigenvalues is less than unity, this stationary distribution is unique and reached by any initial
distribution. The stationary distribution, denoted by |0〉L, is the focus of the following
calculations. It is shown below that it is unique.

One very important bra-eigenvector with eigenvalue 1 of OL(x = 1) is

〈0|L ≡ (1, 1, . . . , 1︸ ︷︷ ︸
2L times

) (14)

by normalization. As has been indicated above, for general x, the operator OL(x) becomes
a moment generating function of the avalanche size, if sandwiched between 〈0|L and the
stationary distribution:

QL,n(x; ε) ≡ 〈0|LOn
L(x)|0〉L. (15)

This can be seen from (10) containing an x for every toppling. When the operator acts on a
distribution, for each transition from one state to another a power of x corresponding to the
number of topplings enters and is multiplied by the probability to be in the initial state (given
by the initial distribution) and the transition probability given by the transition matrix. The
function QL,n(x; ε) for general n is then the generating function for avalanches caused by
n = 1, 2, . . . initial kicks. In particular

〈sm〉L =
(

x
d

dx

)m∣∣∣∣
x=1

QL,1(x; ε). (16)

The aim of the following calculations is to find the generating function QL,1(x; ε) or at
least the moments generated by it.
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3.1. General eigenvectors and eigenvalues of OL(x)

It would be very helpful if OL(x) could be written in the form

OL(x) =
2L−1∑
i=0

|i(x)〉LλL,i〈i(x)|L (17)

where 〈i(x)|L denote the left hand and |i(x)〉L the right hand eigenvectors of OL(x) with
eigenvalues λi,L(x) and i = 0, . . . , 2L − 1. A priori it is not clear whether these vectors
actually exist. In the following they are constructed and it is shown that setting ε = 0 leads to
fundamental problems.

Assuming that |i〉L−1 is an eigenvector with eigenvalue λL−1,i of OL−1(x), the definition
of OL(x), equation (10), gives for an arbitrary vector |e〉1

OL(x) (|e〉1 ⊗ |i〉L−1) = [{
ε1 + δ

(
S + xT λL−1,i + x2Uλ2

L−1,i

)} |e〉1
] ⊗ |i〉L−1 (18)

where |e〉1 contains two elements such that |e〉1 ⊗|i〉L−1 is a vector of 2L elements. The matrix
in the curly brackets is simply O1(xλL−1,i ). So, if |e〉1 is either |eλ(xλL−1,i )〉 or |eµ(xλL−1,i )〉
from (8), then |e〉1 ⊗ |i〉L−1 is an eigenvector of OL(x) with eigenvalues ε + δ(xλL−1,i ) or ε.
Thus, based on (8), one can write the eigenvectors of OL(x) as

|i〉L = |eλ(xλL−1,i )〉 ⊗ |i〉L−1

〈i|L = 〈eλ(xλL−1,i )| ⊗ 〈i|L−1

|i + 2L−1〉L = |eµ(xλL−1,i )〉 ⊗ |i〉L−1

〈i + 2L−1|L = 〈eµ(xλL−1,i )| ⊗ 〈i|L−1

(19)

and the eigenvalues as

λL,i = ε + xδλL−1,i λL,i+2L−1 = ε (20)

both with i = 0, 1, . . . , 2L−1 − 1. To start the hierarchy, one defines

|0〉1 = |eλ(x)〉 〈0|1 = 〈eλ(x)| |1〉1 = |eµ(x)〉 〈1|1 = 〈eµ(x)| (21)

and the eigenvalues as

λ1,0 = ε + xδ λ1,1 = ε. (22)

Now it is clear why the quantity ε was necessary: for ε = 0 all but one eigenvalues vanish,
which can be seen from the hierarchy of eigenvalues obtained by iterating (20). Therefore, if
the vanishing eigenvalue of L − 1 is plugged into 〈eλ| or 〈eµ| according to (19), the result is
undefined, as can be seen from (8), so that the bra-eigenvectors cease to exist.

The fact that all but one eigenvalues vanish for ε = 0 is very deceptive. Assuming that
any initial condition |P 〉 can be written in terms of the eigenvectors of OL(1), say

∑
ai |i〉,

this suggests OL(1)|P 〉 = |0〉. This, however, is wrong, because for vanishing ε the operator
OL(x) cannot be written in the form (17) for L > 1. And it must be wrong, because, for
example, kicking an empty system once cannot make it produce the stationary distribution.

If the eigenvectors of OL−1 are linearly independent, then one can show, using the
construction (19), that the eigenvectors of OL are linearly independent as well, provided that
|eλ(xλL−1,i )〉 and |eµ(xλL−1,i )〉 are linearly independent. This is not the case for ε = 0 (see
the ket vectors in (8) with x = 0) and this is the basic reason why ε 
= 0 is needed for the time
being. However, for any ε 
= 0 one can apparently construct a diagonalizing matrix for OL.
Thus, it can be written in the form (17). Especially, the eigenvectors have the property (by
induction)

〈i(x)|j (x)〉L = δi,j (23)
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and as all 2L eigenvectors are linearly independent, they must span the whole space so that

2L−1∑
i=0

|i〉L〈i|L = 1. (24)

In the form (17) the operator can now be applied to a stationary distribution to give

QL,n(x; ε) =
2L−1∑
i=0

〈0|i(x)〉Lλn
L,i〈i(x)|0〉L. (25)

3.1.1. The stationary distribution. From (19) the stationary distribution can be derived
immediately. It is the eigenvector with eigenvalue 1 of OL(1). Setting x = 1 in (20) it
is clear that λL,i = 1 requires a λL−1,j = 1, which, together with (22), gives the unique
λL,0 = 1 provided that ε < 1. If ε = 1, then all eigenvalues are 1, but still all eigenvectors
are linearly independent and therefore span the entire space, so that all initial distributions
are stationary. This is not surprising because ε = 1 simply means that any added particle
immediately dissipates from the system, so that adding a particle is in fact just the identity
operation.

For 0 � ε < 1 the stationary distribution is unique and all other eigenvalues have modulus
less than 1. The eigenvector corresponding to eigenvalue λL,0 = 1 is, according to (19),

〈0|L = 〈eλ(1)|⊗L = (1, 1)⊗L (26a)

|0〉L = |eλ(1)〉⊗L =
(

p

q

)⊗L

(26b)

which is consistent with the notation for the stationary distribution and the normalization
eigenvector introduced in (15) and (14). The last line, equation (26b), indicates that the
stationary state is a product measure, i.e. a state at one site does not depend on the state on any
other site. In fact the spatial correlation function of sites {i1, i2, . . .} can easily be calculated
by ‘dressing’ the states of the sites by appropriate powers of a variable xi , in order to obtain
the generating function of the correlators. The function

C(x1, x2, . . . , xL) = 〈0|L
(

px1

qx−1
1

) (
px2

qx−1
2

)
· · ·

(
pxL

qx−1
L

)
=

L∏
i

(
pxi + qx−1

i

)
(27)

is the generating function of the state correlators, where state 1 stands for z = 1 and state −1
for z = 2. The states have the useful property that the joint contribution of two sites is 1 if
both sites are in the same state and −1 otherwise. The average state is obtained from

xi

d

dxi

∣∣∣∣
x1,...,xL=1

ln(C(x1, x2, . . . , xL)) = d

dxi

∣∣∣∣
x1,...,xL=1

C(x1, x2, . . . , xL) = p − q. (28)

Correspondingly, the connected two-point correlation function of sites i and j is given by

xj

d

dxj

xi

d

dxi

∣∣∣∣
x1,...,xL=1

ln(C(x1, x2, . . . , xL)) =
{

4pq for i = j (29a)

0 otherwise. (29b)

This confirms the absence of correlations and is fully consistent with the expected variance of
the state.
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3.2. The hierarchy of generating functions

Using (25), one can now calculate the generating function QL,n(x; ε), by plugging the
hierarchy of eigenvectors (19) and eigenvalues (20) into (25) and using the properties of
⊗, see equation (4). For n = 1 it is

QL,1(x; ε) =
2L−1−1∑

i=0

xδλL−1,i〈0|i〉L−1〈0|eλ(xλL−1,i )〉1〈i|0〉L−1〈eλ(xλL−1,i )|0〉1

+
2L−1∑
i=0

ε〈0|i(x)〉L〈i(x)|0〉L

where the term proportional to ε comes from the ε in every λL,i (see equation (20)). From
(24) it is clear that the last sum gives 1. The two projections give

〈0|eλ(xλL−1,i )〉1 = xλL−1,ip + q and 〈eλ(xλL−1,i )|0〉1 = p

xλL−1,i

+ q

so that

QL,1(x; ε) = ε +
2L−1−1∑

i=0

xδλL−1,i〈0|i〉L−1〈i|0〉L−1

(
p2 + q2 + pq

(
xλL−1,i +

1

xλL−1,i

))
(30a)

= ε + δ((p2 + q2)xQL−1,1(x; ε) + pq(x2QL−1,2(x; ε) + QL−1,0(x; ε))) (30b)

where equation (25) has been used in the last line. Of course, the generating function
QL,n(x; ε) is defined, (15), for all ε and therefore one can take the limit ε → 0. This limit
should not cause any problems, as ε has only been used to construct the eigenvectors. In fact,
the limit must be identical to setting ε = 0 in (30), as can be shown from (30) by induction in
L. This finally gives

QL,1(x; 0) = (p2 + q2)xQL−1,1(x; 0) + pq(x2QL−1,2(x; 0) + QL−1,0(x; 0)) (31)

where QL−1,0(x; ε) = 1 by equation (15), consistent with equation (25). In fact, the calculation
above can be generalized:

QL,n(x; ε) =
2L−1−1∑

i=0

n∑
j=1

(
n

j

)
εn−j (xδλL−1,i )

j

×〈0|iL−1〈0|eλ(xλL−1,i )〉1〈i|0〉L−1〈eλ(xλL−1,i )|0〉1

+
2L−1∑
i=0

εn〈0|i(x)〉L〈i(x)|0〉L. (32)

Again, all sums can be written in terms of QL−1,n(x; ε) plus εn:

QL,n(x; ε) = εn +
n∑

j=1

(
n

j

)
δj εn−j ((p2 + q2)xjQL−1,j (x; ε)

+ pqxj+1QL−1,j+1(x; ε) + pqxj−1QL−1,j−1(x; ε)). (33)

For vanishing dissipation this simplifies to the central result

QL+1,n(x; 0) = xn(D̃QL,n(x; 0) + D(xQL,n+1(x; 0) + x−1QL,n−1(x; 0))) (34)

with D = pq and D̃ = p2 + q2 = 1 − 2D. Equation (34) is closely related to a diffusion
equation. The boundary conditions are QL,0(x; ε) ≡ 1 for L � 1 as mentioned above and
QL=0,n(x; ε) ≡ 1. The latter comes from a direct evaluation of (25) for L = 1, which is
identical to (33) for QL=0,n(x; ε) ≡ 1.
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3.3. Solving QL,n

There is no general solution for (34) known to the author. However, one can solve it order
by order in derivatives by x at x = 1, i.e. calculate every individual moment, see (16). In the
following, the notation

QL+1,n = QL+1,n(1; 0) (35a)

Q′
L+1,n = d

dx

∣∣∣∣
x=1

QL+1,n(x; 0) (35b)

etc is used. One finds for n � 1

QL+1,n = D̃QL,n + D(QL,n+1 + QL,n−1) (36)

which is solved with the boundary conditions introduced above by QL,n = 1. Of course, this
is just normalization. Using this result the next derivative is

Q′
L+1,n = n + D̃Q′

L,n + D(Q′
L,n+1 + Q′

L,n−1) (37)

with the boundary conditions Q′
L+1,n=0 = 0 and Q′

L=0,n = 0. The solution of (37) can easily
be guessed as

Q′
L,n = nL. (38)

This is not surprising, because it says that the average number of topplings occurring in the
system per n kicks is nL. That is obviously true, because every unit added must leave the
system by travelling through the entire lattice.

The next order is the first non-trivial one. The difference equation then reads

Q′′
L+1,n = (n2 + 2D)(2L + 1) − n + D̃Q′′

L,n + D(Q′′
L,n+1 + Q′′

L,n−1). (39)

Introducing

Q′′
L+1,n = SL+1,n + Q̃′′

L+1,n (40)

with

SL,n =
L−1∑
i=0

(n2 − n + 2in2) = −nL + n2L2 (41)

which has the useful property SL+1,n − SL,n = −n + 2n2L + n2 and SL,n+1 + SL,n−1 =
2SL,n + 2L2, removes the n dependence from the source term,

Q̃′′
L+1,n = 2D(L + 1)2 + D̃Q̃′′

L,n + D(Q̃′′
L,n+1 + Q̃′′

L,n−1). (42)

The solution is therefore simply

Q̃′′
L,n =

L∑
l=1

2Dl2
∞∑

m=1

ψL−l,n,m (43)

with the propagator ψL,n,m, obeying

ψL+1,n,m = D̃ψL,n,m + D(ψL,n+1,m + ψL,n−1,m) (44)

with boundary condition ψL,n=0,m = 0 (from Q̃′′
L,n=0 = 0) and initial condition ψL=0,n,m =

δn,m. This propagator describes the density of discrete random walkers at n > 0 starting at m.
The boundary condition can be satisfied by a mirror charge trick applied to ψ0

L,n, which obeys
(44) in the whole plane n, where ψ0

L,n = ψ0
L,−n, so that (43) becomes

Q̃′′
L,n =

L∑
l=1

2Dl2
2n∑

m=1

ψ0
L−l,n−m. (45)
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The propagator is constructed by Fourier transforming (44), which gives

ψ̃0
L,k = [(p eik/2 + q e−ik/2)(p e−ik/2 + q eik/2)]L (46)

and therefore

ψ0
L,n =

L∑
m=0

(
L

m

)(
L

m − n

)
p2L−2m+n q2m−n. (47)

The well-known solution of the diffusion equation on the lattice(
2L

L + n

)
2−2L (48)

is obtained for p = q = 1/2 from (47) using ‘Vandermode’s convolution’ [19]

L∑
m=0

(
L

m

)(
L

m − n

)
=

(
2L

L + n

)
. (49)

For n = 1 (45) reads

Q̃′′
L,1 =

L−1∑
l=0

2D(L − l)2
l∑

m=0

(
l

m

)
p2l−2m q2m

((
l

m

)
+

(
l

m + 1

)
q

p

)
. (50)

In order to analyse the asymptotic behaviour for L → ∞, one writes

Q̃′′
L,1 =

L−1∑
l=0

2D(L − l)2φ∗(l) (51)

with

φ∗(l) =
l∑

m=0

(
l

m

)
p2(l−m)q2m

((
l

m

)
+

(
l

m + 1

)
q

p

)
. (52)

For large l the binomials can be approximated by a Gaussian(
l

m

)
pl−mqm → 1√

2πlpq
exp

(
− (m − lq)2

2lpq

)
(53)

and writing (52) as an integral over m, one arrives at

Q̃′′
L,1 →

L−1∑
l=0

2D(L − l)2 1√
4πlpq

(E(
√

lp/q) + E(
√

lq/p)) (54)

where E(x) ≡ 2
∫ x

0 dz exp(−z2)/
√

π . Evaluating the sum as an integral, in leading order this
turns out to be

Q̃′′
L,1 → 32

15
√

π

√
pqL5/2 (55)

which is according to (40) also the leading order of Q′′
L+1,n and therefore the leading order of

〈s2〉, see (16) with (38). This is perfectly confirmed by numerical simulations of the model.
The two exponents γ1 = 1 (see equation (38)) and γ2 = 5/2 (55) lead together with (3) to
τ = 4/3 and D = 3/2.
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1 2 3 4 5 6 7

p q
a1

Figure 1. The thick, full line shows the configuration of the lattice after an avalanche has passed
through. Each up- or down-pointing segment corresponds to a single site, the position label of
which is shown under the dotted line. A segment pointing upwards corresponds to a site being in
state z = 1 (with probability p, see equation (26b), a segment pointing downwards corresponds to
state z = 2 (probability q), as indicated. The dashed line corresponds to a ‘toppling trajectory’ as
explained in the text.

4. Reaction–diffusion mapping

It is possible to map the model onto a very simple reaction–diffusion process of the form
A + A → A [20]. To this end, the configuration of the lattice is described by the thick line
shown in figure 1. The line consists of segments, which can either point up or down by an
angle of 45◦. If the line corresponding to the ith site goes up, it indicates that the ith site is in
state z = 1, otherwise the line goes down indicating the state of the site to be z = 2. According
to (26b) the configuration of the lattice (in the stationary state) after an avalanche is a product
state, where a site is in state z = 1 with probability p and in state z = 2 with probability q.
Thus, the thick line is in fact the trajectory of a random walker with drift corresponding to the
difference p − q.

The avalanche itself, on the other hand, is a random walk with the same probabilities.
One can see that by considering the activity ai , which is the number of charges received at
site i during an update sweep as described in section 2.1. From site to site, the activity can
either remain constant or change by 1 up or down. Apparently, a1 = 1 is the driving. If a
site receives ai charges and changes state by 	zi = zi(t) − zi(t + 1), then its right neighbour
receives ai+1 = ai + 	zi charges. If 	zi = 0, then the vertical distance between two
consecutive configuration trajectories (as shown by the thick and dashed lines in figure 1) does
not change. If, however, the new configuration of site i has an increased value zi(t +1) > zi(t),
the activity goes down, because 	zi < 0. The only way to increase zi is to go from state 1
to state 2, i.e. the line segment of the former configuration points up (probability p), while the
line segment of the new configuration points down (probability q), so that the gap between the
two trajectory decreases, see figure 1 at the dotted line 3. Similarly, if the activity goes up,
then 	zi > 0 and the gap increases.

After the activity vanishes, the profile of the new configuration remains unchanged
compared to the former, i.e. the gap between the two configurations is a constant. In fact, if
the gap was initially 1 and goes up and down by 1 as described above, then the gap will be 0 as
soon as the activity vanishes. This is exactly what is shown in figure 1: the thick dashed line
shows the new configuration and its distance to the old configuration is the activity during the
avalanche. This avalanche occurs within the configuration shown as a thick line, initiated by a
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single kick. Initially the gap is a1 = 1. If the dashed line went down immediately on site 1, the
site would have ‘absorbed’ the initial unit and would be in state z = 2 (i.e. a segment pointing
down). Instead, in the example, it goes up twice; first just like in the old configuration so that
the activity does not increase, and then in the opposite direction to the old configuration so
that the activity increases by 1. On sites 3 and 4 it goes down twice; the toppling on site 4 is
particularly interesting. Here, initially the activity is 1, i.e. the site has received 1 unit. But the
site is in state z = 1, so it absorbs the unit with probability q, corresponding to the probability
of the dashed line segment to point downwards.

The activity is measured half a unit left of each site as the distance between the old and
new trajectories, which, in turn, is measured in such units that the vertical distance between
two circles (in figure 1) is 1. The reason for the shift is that one wants to measure how many
charges have arrived at a site, not affected by the value of the resulting activity.

To repeat this important point, the trajectory of an avalanche becomes the configuration
for the next avalanche, i.e. the thick dashed line in figure 1 becomes the thick solid line for the
next avalanche.

One can calculate the probability of the changes of activity explicitly: the new segment
goes up with probability p and down with probability q, the same applies to the old segment.
Thus, they point in the same direction (no change of activity) with probability p2 + q2, the gap
widens with probability pq and shrinks with qp. Hence, the gap between the two trajectories
is in fact a symmetric random walk, even though the individual trajectories might have a bias,
according to p − q.

As described above (see section 2), the avalanche size is measured as the number of
topplings. For convenience, one can define it as the number of charges, which makes hardly
any difference, because the number of topplings of site i is identical to the number of charges
on site i + 1, unless i = L, simply because there is no site L + 1; similarly for L = 1.

In the following, we will consider the number of charges as the avalanche size, because
the total number of charges is simply the area between two of those trajectories described
above, namely the sum over all activities. From this it is also clear that the avalanche size is
actually uniquely determined by the initial and the final configurations, with initial activity
a1 = 1.

4.1. Relation to other models

Before the above identification of the process as a random walker is cast into an continuum
problem and subsequently solved, it is worth pointing out other models which are closely
linked to the present one.

4.1.1. Anisotropic BTW model. Dhar and Ramaswamy [21] developed an anisotropic variant
of the well-known BTW sandpile model [1], which is now known as the directed sandpile
model. This model, however, is situated on a (1 + 1)-dimensional lattice and the annihilating
random walkers represent the contours of the compact area covered by an avalanche. The
randomness here comes solely from the randomness of whether a site charged by particles
from toppling sites topples in turn. An equivalence to a variant of directed percolation [22]
has already been pointed out in [21], see also [23].

Kloster, Maslov and Tang [24] have studied a stochastic directed sandpile model, which
was originally proposed by Pastor-Satorras and Vespignani [25]. This model is closely related
to the one presented in this paper, even though it is also situated on a (1 + 1)-dimensional
lattice. For its one-dimensional variant [26], the authors find the same exponents by scaling
arguments. The mapping to the two-dimensional reaction–diffusion process presented above,
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cu
to

ff

(t, x)

(0, x0)

Figure 2. The area under the trajectory (hatched) is the avalanche size. The two filled circles mark
the starting point (0, x0) and the end point (t, x).

x

∆t

(t, x− ∆x)

(t + ∆t, x)

Figure 3. A new segment (hatched area) is added to the currently considered path, increasing
all areas in the ensemble {si (t, x − 	x; x0)} by x	t + O(	t	x) and producing a new ensemble
{si (t + 	t, x; x0)}. The example shown corresponds to (56c), which starts at (t, x − 	x). The
starting points of other contributions are shown as empty circles. The coordinates of the two black
points are given in the form (t, x).

questions their assertion that their model is in a different universality class than the model by
Dhar and Ramaswamy.

For these models it is fairly obvious how to extend them systematically to higher
dimensions. Using scaling arguments in conjunction with some simplifying assumptions,
Paczuski and Bassler [27] arrive at a general expression for the value of the exponents of this
model in higher dimensions. Unfortunately, it is not so clear how to generalize the model
studied in this paper to higher dimensions, because it is unclear how to generalize the driving
and what boundary conditions to apply.

5. Continuum solution

Having mentioned already the mapping to an annihilating random walk, the continuum
description is straight-forward. To this end, the quantity ψn(t, x; x0) is introduced. It quantifies
the properties of a random walker along an absorbing wall. For n = 0 it is the probability
density of random walkers at time t and height x over the absorbing wall, starting at height x0,
which is x0 = 1 for a single initial kick. Here, t takes on the rôle of the horizontal (continuous)
position between t = 0 and t = L in a picture like figure 1. To motivate the following
calculation, one imagines a large set of trajectories of random walkers along the absorbing
wall from t = 0, x = x0 to t and x. The set of areas under the trajectories, as exemplified
in figure 2, is then {si(t, x; x0)}, where i is indexing the elements in the set. 〈{sn(t, x; x0)}〉
is the average of the nth moment over this set. Now one can express the time evolution of
this average as the sum of three contributions of the three processes of up, down or straight
movement of the random walker. Thus, up to terms of order 	t	x (see caption of figure 3)

ψ0(t + 	t, x; x0)〈{sn(t + 	t, x; x0)}〉
= pqψ0(t, x + 	x; x0)〈{(s(t, x + 	x; x0) + x	t)n}〉 (56a)
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+ (p2 + q2)ψ0(t, x; x0)〈{(s(t, x; x0) + x	t)n}〉 (56b)

+ pqψ0(t, x − 	x; x0)〈{(s(t, x − 	x; x0) + x	t)n}〉 (56c)

where each term corresponds to a process like the one shown in figure 3. The multiplication
by ψ0(t, x; x0) is necessary in order to weight each of the ensembles for each contribution
properly. For example, a much larger contribution might come from below, even though on
average the moment at this position is smaller than at the other positions.

Defining

ψn(t, x; x0) ≡ ψ0(t, x; x0)〈{s(t, x; x0)
n}〉 (57)

one finds in the continuum limit of (56) (keeping D	t/	x2 constant)

∂tψn(t, x; x0) = D∂2
xψn(t, x; x0) + xnψn−1(t, x; x0) (58)

where D = pq again1. The boundary conditions for n = 0 are observed immediately and
transferred to ψn using (57) by noting that 〈{s(t, x; x0)

n}〉 is non-divergent, so

lim
t→0

ψn(t, x; x0) = δn,0δ(x − x0) (59a)

ψn(t, 0; x0) = 0 (59b)

and the PDE (58) is to be solved for x ∈ [0,∞[.
The avalanche sizes are measured from avalanche trajectories which have died out or

reached the end of the system. Thus, the averages measured in the model are taken from the
random walkers which have reached the absorbing wall or did not do so until a cutoff time t.
Therefore the nth moment observed is

〈sn〉(t; x0) =
∫ t

0
dt ′ jn(t

′; x0) +
∫ ∞

0
dx ′ ψn(t, x

′; x0) (60)

where the first integral runs over the ‘outflow’, jn(t, x = 0; x0) ≡ D∂x |x=0ψn(t, x; x0) and
the second over the contributions at cutoff time (see marks in figure 2). 〈sn〉(t; x0) denotes the
nth moment of the avalanche size (measured as the number of charges) for a system of size t
starting with x0 initial charges. Using (58) one has

〈sn〉(t; x0) =
∫ t

0
dt ′

∫ ∞

0
dx ′ x ′nψn−1(t

′, x ′; x0). (61)

The dimensionless form of ψ is given by

ψn(x, t; x0) = 1

x0

(
x3

0

D

)n

ψ̃n(y, τ ) (62)

with y = x/x0 and τ = t
/(

x2
0

/
D

)
. The propagator G(y, τ ; y0) is easily obtained from a

mirror-charge trick,

G(y, τ ; y0) ≡ 1√
4τπ

(
exp

(
− (y − y0)

2

4τ

)
− exp

(
− (y + y0)

2

4τ

))
(63)

and ψ̃0(y, τ ) = G(y, τ ; 1), i.e.

ψ̃0(y, τ ) = 1√
τπ

exp

(
−y2 + 1

4τ

)
sinh

( y

2τ

)
. (64)

1 It is interesting to note that this can be written using a generating function �(t, x; x0, ξ) with ∂t� = xξ� +D∂2
x�,

so that indeed dn

dξn

∣∣∣
ξ=0

�(t, x; x0, ξ) = ψn(t, x; x0).
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One might be inclined to transfer the problem into k-space, which, however, does not simplify
the problem because of the boundary condition (59b). The expression

ψ̃n(y, τ ) =
∫ τ

0
dτ ′

∫ ∞

0
dy ′ ny ′ψ̃n−1(y

′, τ ′)G(y, τ − τ ′; y ′) (65)

is the formal solution. Rescaling the arguments of ψ̃n by powers of µ one finds

ψ̃n(
√

µy,µτ) = µ3/2
∫ τ

0
dτ ′

∫ ∞

0
dy ′ ny ′ψ̃n−1(

√
µy ′, µτ ′)G(y, τ − τ ′; y ′). (66)

From ψ̃n−1(
√

µy,µτ) = µαn−1ψ̃n−1(y, τ ), then follows ψ̃n(
√

µy,µτ) = µαn−1+3/2ψ̃n(y, τ ).
Thus, starting with ψ̃0(

√
µy,µτ) = µα0ψ̃0(y, τ ) one has apparently

ψ̃n(
√

µy,µτ) = µ
3
2 n+α0ψ̃n(y, τ ). (67)

Unfortunately the scaling behaviour of ψ̃0 is a bit more complicated. Nevertheless, it can be
expanded for large µ, or actually large µτ , as

ψ̃0(
√

µy,µτ) = 1

µ

1√
τπ

exp

(
− y2

4τ

)(
y

2τ
+

1

µ

(
y3

48τ 3
− y

8τ 2

)
+ · · ·

)
. (68)

Bearing in mind the necessity of large µτ one can now apply the scaling argument (67) order
by order in µ since equation (58) and its dimensionless counterpart are linear. From (68) it is
α0 = −1 for the leading order, α0 = −2 for the first sub-leading order and so on.

Equation (67) immediately translates to 〈sn〉 using (61) and (62); to leading order one
finds

〈sn〉(µt; x0) = µ(3/2)n+1/2+α0〈sn〉(t; x0) + · · · . (69)

Assuming (1), from (2) with t taking the rôle of L it follows that D = 3/2 and D(1 − τ) =
1/2 + α0, i.e. for α0 = −1 one has τ = 4/3. The next order correction is D = 3/2 and τ ′ = 2.

Of course, it is also possible to calculate the leading orders of 〈sn〉 exactly. Because of
(69), one needs to calculate 〈sn〉(µt; x0) for one value of t only. The simplest choice is to set
t = x2

0

/
D, which gives 〈s〉(x2

0

/
D; x0

) = x3
0

/
D for n = 1, i.e.

〈s〉(t; x0) = x0t (70)

which is exactly (38) (n in (38) corresponds to x0 here and L in (38) to t). This is actually
surprising, because (70) is only the leading order and corrections are expected from higher
orders. However, it turns out that in fact all higher order corrections cancel. Indeed, remarkably∫ ∞

0
dx x exp

(
−x2

4t

)(
x

t
− 2 exp

(
− 1

4t

)
sinh

( x

2t

))
= 0 (71)

even though x/t is only the leading order of 2 exp(−1/(4t)) sinh(x/(2t)). Especially∫ ∞

0
dx x exp

(
−x2

4t

)(
x3

48t3
− x

8t2

)
= 0. (72)

According to (61) the next moment is

〈s2〉(µt; x0) = 2µ5/2
∫ tD/x2

0

0
dτ

x2
0

D

∫ ∞

0
dy

x3
0

D
yx0ψ̃1(y, τ ) (73)

the leading order of which can be determined using the leading order of ψ̃1,

ψ̃1(y, τ ) =
∫ τ

0
dτ ′

∫ ∞

0
dy ′ 1√

τ ′π
exp

(
− y ′2

4τ ′

)
y ′2

2τ ′
1√

4π(τ − τ ′)

(
exp

(
− (y − y ′)2

4(τ − τ ′)

)
− exp

(
− (y + y ′)2

4(τ − τ ′)

))
+ · · · (74)
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which gives the leading order of 〈s2〉

〈s2〉(t; x0) = 32

15
√

π
t5/2

√
Dx2

0 + O(t3/2) (75)

identical to (55). Higher orders become very tedious, so that numerical evaluation seems to
offer the better option.

6. Discussion and conclusion

The results above represent some of the few exact results for sandpile-like models:
equations (38) and (55) are the exact leading orders of the first two moments of the avalanche
size distribution without making any assumptions about scaling behaviour. The conclusion
that τ = 4/3 and D = 3/2 can only be drawn by either assuming (1), or by accepting the
continuum result (69) and using the uniqueness of the distribution inferred from its moments2.

The method introduced in section 3 is not restricted to sandpile-like models. The
underlying idea is to use a Markov matrix not only to evolve the state distribution, but
also to calculate the moment generating function of the relevant observable. In order to obtain
the finite-size scaling behaviour, its set of eigenvectors is generated recursively. From this
recursion relation one can then develop a (discrete) PDE like (34), which can subsequently
be used as a starting point for other techniques. In a two-dimensional variant of the present
model, this recursion relation is much more complicated to obtain and might require the use
of a matrix product state ansatz [13]. Nevertheless, it seems promising to apply the approach
to more complicated processes, such as the TASEP and recent variants [28], for which there
is no solution known yet.
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